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FROM FORMAL NUMERICAL SOLUTIONS 
OF ELLIPTIC PDE'S TO THE TRUE ONES 

Z. WIENER AND Y. YOMDIN 

ABSTRACT. We propose a discretization scheme for a numerical solution of el- 
liptic PDE's, based on local representation of functions, by their Taylor poly- 
nomials (jets). This scheme utilizes jet calculus to provide a very high order 
of accuracy for a relatively small number of unknowns involved. 

1. INTRODUCTION 

This work is devoted to an introduction and a preliminary investigation of a 
discretization method, based on representation of functions by their Taylor poly- 
nomials on a certain grid. 

We tried to achieve three main goals: 
1. A general description of the proposed discretization and the numerical scheme 

based on it, and discussion of its main features, advantages and restrictions. Initial 
theoretical investigation of this general scheme. 

2. Construction of a high-accuracy scheme for a special example of the Laplace 
and Poisson equations. Investigation of the discretization error and a preliminary 
experimental testing of its accuracy and stability. 

3. Description of a multiscale solution scheme, which allows for a significant re- 
duction of the stiffness of the equation to be solved, and a preliminary experimental 
investigation. 

Our discretization scheme for solving elliptic PDE's is based on Kolmogorov's 
optimal representation of smooth functions on the one hand, and on Gromov's ap- 
proach to solving PDE's on the other (see [5], [2]). This method has been proposed 
in a general form in [11] and partially implemented in [3], [4]. It consists of several 
steps. 

1. All the functions involved (known and unknown) are represented by their 
Taylor polynomials of a fixed degree k at all the nodes of a certain fixed grid. 

2. The Taylor polynomials for the unknown functions (whose coefficients form 
the basic set of the unknowns) are a priori parametrized to satisfy locally the PDE to 
be solved. For example, for the equation l\u = 0, harmonic polynomials are used at 
each grid point. The boundary conditions are incorporated into the parametrization 
of the Taylor polynomials at the grid points near the boundary. However, for 
the parameter values, picked at random, the above Taylor polynomials satisfying 
the equation do not agree with one another. In Gromov's terminology [2], they 
form a nonholonomic section of a differential relation and do not represent a true 
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solution of the equation. Thus the solution process consists of finding the values of 
the unknown parameters which minimize the discrepancy between the neighboring 
Taylor polynomials. This approach can be considered to be a discretized realization 
of Gromov's h-homotopy. In such a terminology the standard methods use a true 
function which approximately satisfies the differential relation. Our method uses 
objects which are not true functions but satisfy the differential relation exactly. 

3. We implement the last stage of the solution as a certain relaxation procedure 
where the Taylor polynomial at each node is corrected according to the neighboring 
ones. The mere presence of several Taylor coefficients at each node (instead of 
the only one in standard schemes) allows one to find relaxation coefficients which 
"cancel" the discretization error of the solution up to an order m which is much 
higher than k. For example, for l\u = 0 for the second degree Taylor polynomials, 
for an internal node we get the discretization error of order h10, where h is the step 
of the grid. 

4. At the previous stage we got at each grid point a Taylor polynomial of degree 
k which agrees with the Taylor polynomial of the true solution at this point up 
to order m > k. It turns out that from this data one can usually reconstruct-at 
each grid point the m-th degree Taylor polynomial of the true solution, with the 
same accuracy. For this reconstruction, the same neighboring nodes as those for 
relaxation, are used. Figure 1 gives a pictorial explanation of the method. 

Let us now discuss in more detail the reasons behind the choice of this scheme 
and some of its features. 

The question of an optimal E-representation of smooth functions has been inves- 
tigated by Kolmogorov in his work on E-entropy of functional classes [5]. It was 
shown that asymptotically, the best way to memorize a Ck-function up to accuracy 
E > 0 is to store the coefficients of its k-th order Taylor polynomials at each point 
of some grid of size h = O(El/(k+l)). 

The following point implied by the Kolmogorov representation is very impor- 
tant in our approach: We assume that a required accuracy or tolerance E > 0 is 
given from the very beginning. We require the discretized data to represent the 
"true" function up to this accuracy in a Ck_norm. But we do not require the dis- 
cretized data to be itself a Ck-function. In particular, the Taylor polynomials at 
the neighboring grid points may disagree up to c. 

sections of the jet-bundle Solutions 

(/methodl 

standard method Functions 

FIGURE 1 
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This makes our representation very flexible. In particular, we make no effort to 
subdivide the domain into pieces where each of the polynomials is used or to adjust 
their values (and/or the values of their derivatives) at the boundaries of such pieces. 

Notice that this subdivision and adjustment is by far the most complicated part 
in many high-order algorithms. Moreover, it introduces into the solution process a 
rigid combinatorial-geometric structure, which has nothing to do with the equation 
to be solved. 

An important requirement for a discretization scheme used in analytic computa- 
tions is that any analytic operation or functional, applied to a given function, must 
be expressible (up to accuracy E) in terms of a discretization of this function. Our 
scheme satisfies this requirement (see [11]). 

In some applications, such as computer graphics and engineering, it is important 
to be able to produce ultimately a truly continuous or smooth function from the 
discretized data. In our scheme this can be done using a partition of unity. 

The absence of adjustment of neighboring polynomials makes the scheme de- 
scribed relatively insensitive to the precise geometry of the grid. This geometry is 
involved only in the computation of the optimal relaxation coefficients (see subsec- 
tions 4.1 and 5.1). 

Also near the boundary no adjustment of the grid geometry is necessary. Using 
the calculus of Taylor polynomials, we incorporate the boundary data into the 
structure of the Taylor polynomials at the grid points near the boundary with the 
maximal accuracy required (see subsection 3.2). 

The following two remarks explain why we can expect the suggested scheme to 
provide a very high order of a discretization error for a relatively small number of 
unknowns. 

1. We use jets at each grid point which satisfy the initial differential equation. 
This strongly reduces the number of free parameters. For example, for two inde- 
pendent variables, general jets of degree k, contain (k+l)(k+2) parameters. Jets of 
degree k, satisfying a linear PDE with constant coefficients of order 2, have 2k + 1 
free parameters (see subsection 3.2). 

Notice that the requirement for local representing elements to satisfy the initial 
differential equation is usually not compatible with the precise adjustment of val- 
ues and derivatives for neighboring elements (since the last requirement leads to 
elements with compact support). 

2. We find a relaxation scheme (i.e., equations relating a Taylor polynomial at 
each grid point with its neighboring polynomials) which provides a highest order 
discretization error. Since we spend no degrees of freedom to provide boundary ad- 
justment of neighboring polynomials, enough degrees of freedom remain to "cancel" 
the Taylor coefficients in a discretization error up to a high order. The following 
rough computation shows what order of accuracy can be expected. 

For a second-order equation and jets of degree k we have 2k+1 parameters at each 
grid point. Thus at four nearest neighboring points, we have 8k + 4 parameters. 
Assuming that the systems which arise are solvable, we can reconstruct (at the 
central point) a jet of degree 4k satisfying the equation, or we can cancel the 
Taylor terms in the discretization error up to the same degree. In subsection 4.1 
we describe this procedure in detail, showing in particular that for A\u = 0, for a 
regular grid and k = 2, the corresponding equations are solvable up to degree 10 
because of a symmetry in the problem. 



200 Z. WIENER AND Y. YOMDIN 

Notice that wider neighborhood stencils can be used in the relaxation proce- 
dure. However, geometrically compact schemes have important computational ad- 
vantages. 

The aim of this work is mostly to describe the Taylor polynomial discretiza- 
tion scheme from the point of view of its structure, and the discretization errors 
produced. However, there is an important stability problem to be addressed. In 
fact, this problem is encountered by any numerical method involving an explicit 
treatment of high-order derivatives: such schemes inevitably contain coefficients 
proportional to high negative degrees of the grid size which makes them very sen- 
sitive to a numerical noise. 

We have investigated two basic approaches which allow us to overcome this 
difficulty. The first one is described in detail in subsection 4.1. It is based on the 
fact that we can work with the triangular relaxation schemes in which derivatives of 
a certain order are influenced only by the derivatives of the same and higher orders 
of the neighboring jets. The accuracy of such schemes is, of course, lower than for 
full ones. Triangular schemes can be split into a chain of successively solved stable 
schemes, starting with the highest order derivatives. 

The second approach is based on the full schemes, which provide the highest 
order of a discretization error, but cannot be split in any obvious way. Here the 
stability problem can be solved by a multiscale approach starting with a low order 
scheme, and then solving at each step a one order higher residual problem (properly 
rescaled). Below we describe this multiscale procedure in detail and give some initial 
numerical results. 

A similar discretization scheme can be used for other types of equations. In 
particular, some initial results, concerning the discretization error and stability 
of the above type schemes for parabolic equations are given in [1]. Numerical 
approaches, based on Taylor approximation, are quite popular in solving ordinary 
differential equations (see [8] for example). To our best knowledge, such approaches 
are much less investigated in PDE's, however (see [8] and [12]), where somewhat 
similar methods are proposed. 

The authors would like to thank the referee for useful suggestions which helped 
us to improve the presentation. 

2. BASIC FACTS AND DEFINITIONS 

2.1. Jets and jet-functions. We say that two real-valued functions f and g both 
defined in some neighborhood of a point z E RE are k equivalent if they coincide 
at this point up to derivatives of order k. Identifying functions with respect to this 
equivalence relation, we get the space of k-jets at the point z denoted further as 
Jetz. We denote as jetz f the k-th order jet of a function f at a point z E RW. The 
dimension of Jetz is 

1 +n+ n( 1) + + (? + k - 1)! (n + k)! 
2 (nm-1)! k! n! k! 

We denote by Bz the set of all multi-indexes a = (a1, a2,.. ,an) describing all 
jets of order k at a point z. 

Consider a compact set G C Rn, and a bundle with the fiber Jetz at each point 
z E G. We denote the set of all sections U(z) of this bundle by JEF5G and call them 
jet-functions. They form a finite dimensional linear space in the case when k < oo 
and the set G is finite; otherwise, the space JEF G is infinite dimensional. 
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Arithmetic operations on JEF5G are naturally defined pointwise. Each jet has a 
polynomial representative, so we can easily define a shift operation just by expand- 
ing the same polynomial at another point. In fact the shift operator is another 
form of the Taylor formula written in the form of a linear operator on the Jet space 
SZ,z: Jetz -* Jetz. For example a shift of a 2-jet defined at (0, 0) E JR2 to a point 
(x,y) is 

/UO -UUOO + UIOX + UOIY + U20 X2 + UoIX y + U02 Y2 

UUo U+ o + U20X + UllY 

U20o U2 
U11 U11 
U02 U02 

The corresponding operator is given by the following matrix: 

X y X2 
xy Y2 0 X y x O O 

0 1 0 x O0 0 0 0 x y O 

s (?, ), (X, Y) 0 y expOOO 
y 

_ 0 0 0 10e0 O 0 0 0 0 0 
O 0 0 1 0 10 00 0 0 
o 0 0 0 0 1 k0 00 O 00 

Denote the Taylor expansion of a jet U at a point a E G by 

Ta U (z) S (z a) Ua 

Ic,l<k 

Another important operation defined on jets is composition (substitution) which 
corresponds to a polynomial change of coordinates. So given a k-jet U : RT -* R' 
and a k-jet V : JR1 -* Rf, one can define U o V as a composition of polynomial 
mappings with only terms up to order k preserved. 

2.2. Extendible jet-functions. Any function f E Ck has its representative in 
JEF7, namely the following section: z | - jetz f. Such a section we call holonomic 

following [2]. For some G the space JEF5G contains also nonholonomic sections. For 

example in case G = [0,1] C JR, k = 1, the section Uo(z) _ 1, Ui(z) _ 1 cannot be 

represented as a true function. 

There exists a well-known criterion for a section of the JEF bundle to be holo- 

nomic. It can be formulated geometrically as a tangency to the Cartan distribution 

[91, or algebraically [6] through the Whitney functional. 

The following Whitney's theorem [10] describes jet-functions which are extendible 

from a compact set G c R'T to the whole space. 

Whitney theorem. If U E JEFkG and for any x, y E G, z E nR 

lTx U(Z)- yU(Z)l < p(IX-| 
* 

|-|l+| k) 

where the function p is a modulus of continuity,1 then there exists a function u 

(k times differentiable in G and smooth outside) defined on a ball Br of an arbitrary 

big radius r and constants Cc, such that 

lan increasing continuous convex function vanishing at zero 
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1) for every lal < k, x E G, z E Br 

JD'u(z) - D'TkxU(z) I < Cc, p(z - xl) Iz -xlk-lal 

2) for every lal > k, z E Br\G 

lDeu(z)I < Cce p(dist(z, G)) . dist(z, G)k-lal. 

The proof of this theorem is given in [6], for example. 

2.3. Discrete version of Whitney theorem. In the situation we have in mind, 
the support set G is a finite grid. We assume G to be cl h- quasiregular, which means 
that the union of balls of radius h centered at all grid nodes covers the whole set 
Q, and the distance between any two points of the grid is not smaller than clh (for 
some constant c1 > 0). We assume that for each node z E G a set of its neighbors 
N(z) c G is defined which forms a stencil for the discretization scheme developed 
below. We also assume that these stencils are chosen in such a way that there exists 
a constant c2 > 0 such that for any node z and z E N(z) the distance between *z 
and z does not exceed c2h. 

Introduce a norm on the space Jetk: 

I| U| = max hlIek1. Uce 

Define the full Whitney functional as 

WFfull (U) max 11 Szj,zlUz - 
zj,zl EG 

This functional is not a norm because it vanishes on global polynomials of degree 
< k but it measures in some sense how far a given jet-function is from the class of 
smooth functions, or what the degree of incoherence of jets is at different nodes. 
But in fact it is very similar to the modulus of continuity which is used in the 
Whitney theorem. 

Definition 2.3.1. Let Uk be a jet-function defined on a quasiregular grid G and 
f a k-times differentiable function. We say that f is c-represented by U if for any 
z. E G, and any a E L3S 

max lljetz f - Szj,zUzj 11 < c. 
Izj-zI<h 

In other words this means that the function f together with all its derivatives 
up to order k lies in a tube of radius c around the given jet-function U with weights 
hk+1-1ci coming from the Taylor formula (see Figure 2.3). 

For any finite set G any jet-function defined on it can be extended to a smooth 
function defined in the whole space. But it is natural to ask for an appropriate 
control on derivatives growth in intermediate points. 

Discrete Whitney theorem. There exists a constant c (depending on the grid) 
such that for any jet-function U defined on an h-quasiregular grid G with WF(U) = 
M there exists a k + 1 times smooth function u defined in an open ball Br containing 
G in which u is cM-represented by U and JIDk+1?u < cM. 



FORMAL NUMERICAL SOLUTIONS OF ELLIPTIC PDE'S 203 

c - tube 

c hk+- 

h 

FIGURE 2.3 

The proof of this theorem is very similar to the proof of the original version of 
the Whitney theorem (see [6], [10]). We do not provide it here. It is important for 
us that the full Whitney functional in the case of a discrete grid can be replaced 
by its short version (without significant changes in the proof) 

WFshort(U) = max max Szj,zlUzj - 11 
zj EG zi EN(zj) 

This form of the functional is local and it requires much less computational effort. 
FRom now on we use this short version of the Whitney functional. 

Remark. FRom the proof of the Whitney theorem it follows that one can always 
choose a smooth function u such that its jets of order k coincide exactly with given 
jets at all nodes of the grid. 

3. DESCRIPTION OF THE METHOD 

3.1. Discretization scheme of the same order as the degree of jets. Here 
we present a straightforward jet discretization scheme for elliptic equations (see [3], 
[4]). 

Definition 3.1.1. A jet Uz E Jetz satisfies the differential equation Lu = 0 (here 
L is a differential operator of order m) if its coordinates interpreted as partial 
derivatives, satisfy the equations obtained from Lu = 0 by differentiation up to the 
order k - m. 

We denote the subset of jets satisfying Lu = 0 by DEz C Jetz. Clearly, jetk u(z) 
of any function u satisfying Lu = 0 belongs to DEzk. 

For a linear equation, DEz is an affine subspace of Jetz. For a nonlinear equation 
of order m, this is an algebraic subset of Jetz. For any k > m, DEz can be repre- 
sented as an affine bundle over DEz-1 since the highest derivatives enter linearly 
in any equation obtained by differentiating the original one [2]. 

Consider some examples. 
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0 0 0 0 0 0 

4 0 0 0 0 0 0 

3 0 0 0 0 0 

2 0 0 0 0 

0 1 2 3 4 5 

FIGURE 3.1.1 

Example 3.1.1. The equation is Lu = ut + u* u, 0, k 2. The jet U 
(Uoo, U10, UoI, U20, U1l, U02)T must satisfy 

Ut + u * ux = 0, 

Utt + Ut Ux +U- Uxt = 0 

utx + u2 + u. UXX = ?, 

that is, 

{ Uio + Uoo * U1= 0 

U20 + UIo UOI + Uoo * Ull 0 

Ull + UO21 + Uoo * U02 = 0- 

Notice that we can parametrize the algebraic manifold DEk, taking Uoo, Uol and 
U02 as parameters and in fact the manifold does not depend on a point z: 

Uio =-UOO Uoi, 

Ull = -UO2o * U02U 

U20 = Uoo * 2 + Uoo . (UT1 + U00 * U02). 

Example 3.1.2. The example is Au = 0. Then Uoo0U1O,U01U2O,U11,U30U21,-... 
can be used as coordinates on the manifold of solutions and we can express any 
derivative through them: 

U02 =- U20, U12 = -U30, U03 =-U21, 

U22 =- U40, U13 =-U31, U04 = U40 * - - - 

Representing the nonzero monomials UOE: by the integer points on the (a,3) 
plane (the Newton diagram) we get Figure 3.1.1. 
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40 d o o 0 0 0 0 

4 4 0 0 0 0 0 0 

3 40 0 0 0 0 0 0 

2 0 0 0 0 0 0 

10 0 0 0 0 0 0 

0 1 2 3 4 5 

FIGURE 3.1.2 

Example 3.1.3. The example is Au = f. The same set as in Example 3.1.2 can be 
used as coordinates but the formulae expressing other derivatives take the following 
form: 

U02 =-U20 + f, U12 =-U30 + fx, U03 = -U21 + fy, U22 = -U40 + fxx. 

Example 3.1.4. The example is uxy = 0. The manifold of solutions is spanned 
by UOO, U10, UO1, U20, U02, . . ., which reflects the fact that solutions of this equation 
have a form of a sum of a function of x plus a function of y (see Figure 3.1.2). 

3.2. Linear equations. If the operator L has the form ZIoj?m a,(z) O,, then all 
the consequences are also linear so the DE is an affine subspace of Jet. 

For a linear equation with constant coefficients, we can give a simple geometric 
interpretation of its jet-solutions. Each operator ac,,, maps a monomial from 
position -y on the Newton picture to the position -y - a. This means that for any 
multi-index 3, 131 < k - m we obtain the following equation: 

(3.2.1) E a.,. ua+ = 0. 

Lemma 3.2.1. All the equations (3.2.1) are linearly independent. 

Proof. We give the proof of the two-dimensional case by induction in 1/1. Assume 
that for 101 < s < k - m, the equations are linearly independent. Consider the 
equations with 101 = s + 1. Clearly each of these new equations contains unknowns 
ua with 1-'y s + 1 + m which did not appear in the equations with 101 < s. So the 
equations (3.2.1) are linearly independent. D 

Corollary. If L is a linear differential operator of degree m with constant coeffi- 
cients, then dim DEk= dim Jetk- dim Jetkm. 

In particular, for n= 2, m = 2, 
dimDEk (k+ 1)(k+2) _ (k l) 2k+? 

2 2 
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For linear differential operators with variable coefficients, dim DE' can jump 
from point to point. A simple example is xu'(x) - u(x) = 0, where dim DE' 1 
for x 74 0 and dim DE = 0. 

We will always assume that a parametrization of the subspace DE' is chosen, 
in such a way that the free parameters are some of the coordinates UY of Jetk, 

a EB3 C B3. For linear equations with constant coefficients one can usually choose 
these "free" parameters in a simple, natural way, due to a simple geometric structure 
of the equations, defining DEk. 

For the Laplace operator, as was shown before, one can choose the set 

{Up0, Uqi, 0<p<k, O<q<k-1} 

as free coordinates, then all other coefficients can be easily found through the 
differential equation. 

For the equation u,y = 0, we can take the set {Upo, Uop 0 < p < k} as indepen- 
dent coefficients. 

3.3. Boundary conditions. Now assume that the point z E Q belongs to a small 
neighborhood of the boundary F. We will show how to impose boundary conditions 
ulr = p on the space Jet'. Other types of boundary conditions can be discretized 
in a similar way. Consider a node z E G which is close to F. Near this point we 
can represent the boundary as a graph of a function depending on one variable, say 
x, by the implicit function theorem. Then F is locally a graph y = g(x). Choose a 
point z- close to z on F and expand g in Taylor series at z- (see Figure 3.3.1). The 
boundary condition then takes the form 

U' O j et (g) = j et' (f ), 

that is, a composition of the jet at z with the equation of the boundary should 
coincide with a jet of boundary values. 

Thus we obtain a manifold Sol' = DE, n BCz C Jetz of jets, satisfying both the 
equation (3.1.1) and the boundary conditions. For interior nodes we put Solzk 
DEz C Jetz, since there are no additional restrictions. For linear equations, Solz 
is an affine subspace of Jetz. We will assume that it can be parametrized by the 
free parameters Uz, -Y E 13z C Sk at each node (recall that Ua corresponds to the 
derivative of order -y at z). So we denote by Bz the set of multi-indexes which form 
a coordinate system on Solk. 

Denote by Solz the linear space spanned by monomials from B1z. This is a linear 
space parallel to Solz, but passing through the origin which cannot be true for 
Solz because of the boundary conditions described above. The whole jet satisfying 
the differential equation can be easily reconstructed by embedding when only free 

/y=g(X) 

Tponr/ 

z 

FIGURE 3.3. 1 
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components are given. We denote this operation by E' : Sol' -? Jet'. Its inverse 
is well defined on Sol' and can be easily extended on the whole Jet'. Denote by 
Pk' this projection operator which gives only free components of any jet. This 
guarantees Pk1E' to be the identity on Sol' and EkPkZ to be the identity on Sol'. 

3.4. Rough estimate. Consider the problem 

(3.4.1) Lu = O in Q, ulr = p on IF =&Q, 

where L is a linear elliptic differential operator of second order. Denote the solution 
of (3.4.1) by u- and assume that for any (smooth enough) u, the following inequality 
(an a priori estimate) is satisfied: 

(3.4.2) max ju- U < cl (max ILul + max ju - 1)l Q~~~~~~~~ 

From now on we fix an h-quasiregular grid G = {z1, ... , ZN} in Q c RIn . Those 
zj, for which the ball Bh (zj) (of radius h centered at zj) intersects F, we call 
boundary nodes of G. 

At each interior point zj E G we consider the subspace Solzj = DEzj of all the 
jets, satisfying the initial equation together with all its differential corollaries up 
to order k, parametrized by zi ZY E3k, as above. At each boundary point zj 
we consider the subspace Solzj DEzi n BCzj parametrized by UZj, EE 3> . All 
these parameters Uzyj form the set of unknowns in our discretization. 

For any choice of free parameters U_Zi we obtain a certain jet-function U on 
G. As it was explained above, the solution procedure consists of minimization of 
WF(U) with respect to these free parameters. In this subsection we will not discuss 
the specific minimization procedures which can be used, but rather prove a general 
theorem, which gives a degree of approximation of a true solution 

Denote by c2 max., 11<k-2 IDOLi(x)l where Li are coefficients of the operator 
L. 

Now we can formulate the following result which estimates a difference between 
true and formal solution in terms of the Whitney functional. 

Theorem 3.4.1. Let U be a jet-function from Sol at each gridnode. Assume that 

maxc,,zj IUaj I < C3 for each node zj E G and WF(U) < M. Then any function v, 
which is cMhk?l represented by U, satisfies for small h 

max Iv- u < C(cM + c2c3)hklv 

where C depends only on the dimension n and order of jets k. 

Proof. By the proof of the Whitney theorem there exists a smooth function v with 
k-order jets coinciding at all gridnodes with the prescribed jet-function U. This 
means that equations (3.4.1) are satisfied up to order k-2: jetzk2 Lv5 = 0. Moreover 
the k + 1-st derivative of v does not exceed cM in Q. This function is constructed 
as a sum of all the jets Uz multiplied by partition of unity based on h-balls centered 
at gridnodes G. 

Then JIDk-l(L3) II< C(cM+c2c3), since the highest derivatives (of order k+ 1) 
in this expression can be estimated by M and all the derivatives of lower order arise 
when we differentiate several times the operator L and the rest of Dk l acts on v 
(by Leibnitz rule). 
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Using Taylor decomposition of order k - 1 of Lv3 at any gridpoint we obtain 
that all terms of order less than k - 1 are zero. The residual term (taken in an 
intermediate point) is estimated above. 

Since we assume that U belongs to Sol also at boundary nodes, we have on F 
max, i, - < cMhk+1. Together with the a priori estimate (3.4.2) this completes 
the proof, since any function cM-represented by U can differ from v by not more 
than cMhk+?l. 0 

A similar result was obtained by Niijima [7]. 
The above result is too general to provide a good accuracy estimate. In what 

follows we demonstrate a special realization of the jet method which gives much 
higher precision for a special choice of the Whitney functional. 

3.5. Multiscaling. The method of discretization we suggest typically has a very 
high order of accuracy. But the linear system of equations can be very stiff. Ex- 
amples of condition numbers in case of the Dirichlet problem are given in Table 4. 

We suggest a multiscaling procedure which allows one to overcome this difficulty 
with a minor increase of computational efforts. The idea is as follows. 

The final matrix is badly conditioned because of the weights appearing always 
together with derivatives in the Taylor formula. One can use this fact in order to 
perform an effective pivoting (preconditioning) in the space of jets. The scaling 
multiplies the ar-th component of a jet in the residual equation by the coefficient 
hk+lI-al (compare with the norm on the Jet introduced in subsection 2.3). 

Thus for k = 2 the corresponding scaling matrix is 

O, hi O, O, O, 
O, O, h, O, O, O 
O, O, O, 1, O, O 
O, O, O, O, I, 0 

This leads to the following effect-the condition numbers decrease essentially but 
the right-hand side elements increase. The idea is to apply this scaling to the 
residual terms at level I only when the current approximation is properly found in 
terms of jets of order I- 1. This means we can apply this scaling only when 0-order 
derivatives have an h?l+ order of magnitude, 1-order components are of order h', 
etc. Then the scaling will not lead to a drastic increase of the right-hand side since 
it is already properly scaled. 

The whole algorithm takes the following form. First we perform only 0-order 
discretization and get a 0 order approximation. Then we embed this solution in the 
space of jets of order 1, obtain a new discretized system (of much higher dimension), 
perform scaling of the correction to be found and solve the resulting system with 
higher accuracy (typically one or two orders of h). Each next step consists of 
embedding, scaling and solving the residual system with corresponding accuracy. 
An example of this algorithm is explained in subsection 5.1 

The geometrical picture behind this construction is the following. The Whitney 
functional is a nonnegative quadratic form on JEFi space. It has eigenvalues of very 
different orders of magnitude. But for a section which is close to true functions, 
the discrepancies are correctly scaled; i.e., errors in values are of order hl+l, in 
first derivatives of order h' and so on. This allows one to change the coordinate 
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system in a way which makes a "ball" in the Whitney metric close to a ball in the 
natural metric (restricted on the subspace SOL1). This explains the effects we have 
discovered in the experimental part of this work. 

4. OPTIMAL PARAMETERS FOR THE LAPLACE AND POISSON EQUATIONS 

In this section we describe a specific realization of the general approach intro- 
duced above for the Laplace equation Au = 0 and Poisson equation Au f. We 
consider a discretization on a quasi-regular grid with mesh size h. 

1. We are looking for the relaxation matrices Wi and affine terms R' (for the 
Poisson equation), which express the solution jet at a given node through the solu- 
tion jets at the neighboring nodes with the maximal order of accuracy: 

jet' u- W1 jetz1u-Rz = ? 
z1EN(z) 

2. We substitute into this equation the symbolic coefficients of jetz u and express 
the coefficients of jetzt u through them as well. Then we solve the resulting system 
with respect to the coefficients Wl and Rz up to the highest possible order. 

3. As a result we obtain a relaxation scheme. Its fixed point corresponds to the 
minimum of the Whithney functional constructed as a sum over the grid of squares 
of all the discrepancies. 

4. The result of implementation of this scheme is a jet-function with high degree 
of smoothness (small Whitney functional). Actually the degree of smoothness (i.e., 
the order of discrepancy between neighboring jets) turns out to be much higher 
than for an arbitrary function represented by its k-order jets. We complete the 
representation finding the derivatives of orders higher than k at each gridpoint. 
This is done by applying to the neighboring jets roughly the same matrices as in 
the relaxation procedure. 

Below we give a more detailed description of each step. 

4.1. Optimal weights calculation. Fix a node z of the grid. Assume that at each 
neighboring node a k-order jet of a function u is given which satisfies the equation 
(3.4.1). We will show how to find matrices W1 depending only on the geometry of 
the stencil and the equation, such that for any function u satisfying the equation 
(3.4.1) the jet-norm of the difference 

(4.1.1) ~~~~jetzk W- E jetzkl u 
zi EN(z) 

is as small as possible (in terms of order of h). These matrices define a relaxation 
scheme where on each step a jet Ukz is replaced by EZieN(z) Wl . Ukz. 

We look for the coefficients of each matrix Wl in the form W -z hIHaIw' 
Consider a symbolic jet UK placed at z of an order K (k < K) satisfying (3.4.1). 
This means that coordinates with Py E 13k are arbitrary and all others can be 
reconstructed by embedding UK = Ez(KUJz, here UK E So1l. 

Using the Taylor expansion we can express the coefficients of jetzk u through the 
coefficients of jetz u. This operation does not have to preserve the property to be 
a formal solution, so we perform the following. First take a set of free coefficients 
UK and embed it to Solz. Then shift this jet to a node zi E N(z). This can be 
written in our notation as SKZIEzUK, the linear operator SzZI: Jetz -> Jetz' 
being the shift matrix. The result is a K-order jet at the point zl. To obtain a local 



210 Z. WIENER AND Y. YOMDIN 

solution of order k we project it again on Sol?Z1 and embed the result into Solzl by 
Ezl. This gives Ez1 Pkz CKkSzjz EKUK, with CKk the standard projection of SOlK 
on its subspace Solk. Generally the embedding is not necessarily a linear operation, 
which depends on the equation at each node, but for the Laplace equation at 
internal nodes it is a linear operator. The projection P is always a linear operation. 

If the manifold Solzl is a linear subspace of Jetzk (Laplace equation, internal nodes 
for example) then the product Ekz Pzl CKk is equal to CKk on Solz a projection 
of a K-order jet-solution on its k-order part. 

In case of Laplace equation this allows us to estimate instead of (4.1.1) only its 
free components: 

(4.1.2) U>_z Pkz 1W EzPkzCKkSzzEKUK 
zi EN(Z) 

which we want to have the highest possible order in h. 

Scalar form. Rewrite this matrix equation in a scalar form with the following scal- 
ing. Denote the (a, 3) entry of the matrix Pkzl by hIl +I pl ., and the (-y, 6) entry 
of the matrix Szzl by hI6I-l Isl . 

The system of equations defining W (for the original Laplace equation at an 
internal node) becomes 

UZ = E E E E ~~hldI-Icel pl dhl-yl-101 w',hY 
-lls 6U 

Z e EN(Z) 0Ek G,,1 ye 1321J 625 

Since these equalities must hold for all UO, up to the highest possible value la 
we can exclude U and get a system for w with a E 13k: 

0O, for 6#~a 
Pa W 

E Y Y{ 1, for d = a. 

There exists a maximal K for which these equations are solvable. Then the error 
in UO, which cannot be avoided by using only jets of order k with the same stencil, 
is of order hK-al. 

We have considered two model cases. First, when the optimal weights matrices 
are assumed to be triangular means we use only derivatives of order I and higher 
to find the l-th order derivative. Second (full), we consider this case without this 
assumption. The results of our calculations are given in Section 6 for both Dirichlet 
and Poisson problems. 

Optimal parameters for the Poisson equation. For the Poisson equation Au f the 
Solz subspace is not a linear subspace of Jetz at each internal node z, but an affine 
subspace, which can be represented as a sum of harmonic jets and a jet Fkz corre- 
sponding to the right-hand side. For k = 2 it has the form F2z = (01 ,0 ,0O,0 ,0 (Z))T. 

Thus to reconstruct a jet by its free coefficients, we use embedding of Solz to Jetz 
and add the vector corresponding to the right-hand side EkzUkz + Fkz. 

This leads to the following expression: 

(4.1.3) UZ - E Pkz'W, (EZjPkzCKkSkzz (EKjK + Fk) + Fk ) + 
zi EN(z) 

Again we look for the optimal parameters: matrices Wi and vectors Rz which 
minimize the discrepancy up to the highest possible order. 
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The best choice corresponds to the same linear operators Wl and the affine 
part Rk =-Zz1 N(Z) PklW (EzlPkzlCKkSzzlFjK + Fk), which guarantees the best 
accuracy. 

The relaxation procedure takes the form 

(4.1.5) EzPkz WI Ukzl + Rz + Fkz z (n) k L k WU Ukew 
zl EN(z) 

4.2. Completion operator. As was mentioned above, the relaxation procedure 
usually leads to a k-jet solution with the discrepancy between the neighboring jets 
of order much higher than hk+1. This means that the stencil also contains some 
information about higher derivatives. 

To extract this information we solve the problem of how to reconstruct derivatives 
of order higher than 2 of a harmonic function when its 2-order jets are given at 
5 neighboring nodes. In a general situation instead of harmonic function one can 
deal with a function satisfying some differential equation and consider jets of order 
k as given. 

In order to reconstruct the high order derivatives, the same scheme is used as 
for optimal weights. Denote by Ql the unknown matrices of reconstruction. They 
act on jets of order k at all neighboring nodes in N(z) and the node z itself. The 
result should be a jet of order K at the node z. Consider the difference 

(4.2.1) jetU- u Ql jetz' u. 
z, cN(z)U{z} 

The dimension of matrices Q is dim JetK x dim Jetk. It leads to a system similar to 
(4.1.2). We have solved this system symbolically (on a computer) for both situations 
in study-triangilar and full weights. The results of this calculation were used in 
the numerical experiments we have performed. Examples of solution of (4.2.1) are 
given in Section 6. 

4.3. Boundary conditions. One of the central problems in our approach is an 
appropriate setting of boundary conditions. Indeed, having all the derivatives up 
to order k as free parameters at each gridpoint, it would be natural to prescribe 
the values of all these derivatives on the boundary. However, the Dirichlet data 
provide us only the values of the derivatives in the direction of the boundary. 

We did not try at this stage to investigate this problem mathematically, which 
certainly presents serious difficulties, since the Zigmund-Calderon operator, com- 
pleting the Dirichlet boundary data to a full jet, is not a differential operator, but 
a pseudodifferential one (which means it is not local). Instead we split the problem 
in two parts: 

1. We investigated the boundary data in the form of full jets. The main purpose 
here was to study the discretization error and accuracy at interior points. 

Notice that although in the usual setting this problem is ill-posed, its restriction 
on the subspace of harmonic functions in a neighborhood of Q is well defined. 

2. We considered the usual Dirichlet data (jets in the boundary directions only). 
In this case the unknowns are the derivatives at the interior gridpoints and the 
transversal (and mixed) derivatives at the boundary gridpoints. The optimal re- 
laxation matrices are computed in the same way as above. 

We conjecture that our system is well posed. 
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To confirm this conjecture experimentally, we have compared solutions of the 
same problems for Dirichlet and full jet boundary data (when we assume that all 
derivatives of the true solution are given on the boundary). 

Both the accuracy and the condition numbers of these two approaches turned 
out to be approximately the same. 

The results of our symbolic computation are provided in Section 6. 
For the second order jets the optimal relaxation matrices lead to a cancellation 

of all terms of order less than 12 (for values). The errors in the jet-form are 

{ 2U84, -h46 U92, 842U83,-8!hU82,-!U9,hU82 

5. EXPERIMENTAL RESULTS 

5.1. Discretized system for a fixed level. A few series of numerical experiments 
based on the proposed discretization scheme were performed. The model problem 
which we have considered was the Dirichlet problem in the rectangle [0,1] x [0,1] c 
R2. Of course for this concrete problem there are known effective methods, but 
we actually do not use the special geometry of the domain, so it is hoped that the 
same results are true for more complicated domains. 

We have considered cases k - 0,1, 2. The case k = 0 corresponds to the standard 
discretization 5-points Laplacian. As a true solution we choose the following two 
harmonic functions: u7(x,y) = x7-21x5y2 + 35x3y4 - 7xy6 and u-3(x,y) = 

e3x sin(3y). We use their values and derivatives as given boundary conditions. 
Consider an N x N regular grid G with stepsize h = N 1, and 4(N - 1) nodes 

exactly on the boundary. 
We use two types of boundary conditions. First, we use full jets when at each 

boundary node the whole jet of an unknown function is given. Second, we use 
boundary jets when at each boundary point only derivatives along the boundary 
are given. This case corresponds to a real Dirichlet problem, and the first one is 
used for study of spectral and approximative properties of the discretization scheme 
we suggest. 

Let U E JEFk be an exact solution of the discretized problem. Denote by P 
projection of a global jet-function on the subspace SOL which is a parallel trans- 
lation of the affine subspace SOL to the origin (it is spanned by monomials from 
B3). This can be done easily since we have fixed in each subspace Jet' a set of free 
coefficients 13z which form a coordinate system on Solz. Thus, the action of P is 
defined at each node. 

The subspace SOL is an affine subspace in JEF. Fix a vector V in it, such 
that PV = 0, and a linear operator E which reconstruct jet-function by its free 
components: V + EX E SOL, PE = ido . 

The optimal weights found before define a linear operator on JEF which we 
denote by A. It has a block-bandwise structure, and the jet-function U we are 
looking for is its fixed point 

(5.1.1) AU = U. 

Moreover, the vector U should satisfy the boundary and differential relations; there- 
fore we have to find this vector in the form V + EX. Here V represents an affine 
part of boundary data and X is an arbitrary vector of free coefficients (i.e., from 
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SOL). Then (5.1.1) takes the form 

A(V+EX) =V+EX 

or 

PAV + PAEX = PV + PEX, 

which is equivalent to 

(I-PAE)X = PAV. 

This is the final equation for X; its solution gives the exact solution of the discretized 
problem V + EX. 

The difficulty of solving this linear system numerically depends on the spectral 
properties of the operator I - PAE and the order of magnitude of PAV when h 
tends to 0. Since the inverse matrix should be applied to the vector PAV we have 
also measured its maximal elements which could influence the final accuracy of any 
iterative algorithm. These results are represented in the tables below and in Section 
6. 

5.2. Poisson equation. Another series of experiments were performed for the 
Poisson problem in the same domain. The equation Au = f was considered. The 
right-hand side and boundary values were chosen in such a way that the true an- 
alytic solution was u(x, y) = x7-21x5y2 + 35x3y4 - 7xy6 + sin(4xy) in the first 
case and u(x, y) = e3x sin(3y) + sin(4xy) in the second. Again several grids were 
considered with the same sizes: N = 3, 5, 9, 17 which corresponds to h 1 1 1 1 

As was shown in (4.1.5), the optimal weights found for the Laplace equation 
are valid also in this case, but the final equation for the unknown jet-function also 
involves the right-hand side. 

Let U be the true solution of the discretized problem. Denote by X E SOL the 
vector of free coefficients to be found, and the affine components are F + V, where 
F arises from the right-hand side of the equation (see Fk in (4.1.3)) and V appears 
from boundary data (as in the Dirichlet case). The embedding formula takes the 
following form: U = F + EX e SOL and the equation for optimal smoothing also 
involves an affine component (instead of (5.1.1)) 

AU+R=U, 

which can be rewritten as 

A(F+V)+AEX+R=F+V+EX. 

Project the equation on the subspase of free coefficients 

PA(F+V)+PAEX+PR=PF+PV+PEX, 

which is equivalent to 

X-PAEX=PR+PAF+PAV-PF 

(recall that PE = id?OL and PV = 0). Finally, 

X =(I-PAE)1 . (PR+P(A-I)F+PAV). 

The results of our experiments are represented in the tables below and in Section 
6. They include discretization errors (difference between true solution of the dis- 
cretized problem and the analytic one at nodes), condition numbers of the matrix 
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(I - PAE) (which we have to invert), and the biggest values of the right-hand side, 
i.e., of the vector (PR + P(A - I)F + PAV). 

5.3. Multiscale implementation. The singular values of the matrix I - PAE 
have very different orders of magnitude. Some of them, which correspond to higher 
derivatives, are of order ho, but some, which correspond to lower derivatives, are 
of order hk. The multiscale method we suggest involves k + 1 steps. At each step 
the problem is solved at a current level 1, then we perform scaling and increase the 
level by one (from 1 to 1 + 1). 

Denote the 0-level discretization system by CoXo = Bo. We solve it up to accu- 
racy ho. Next we embed the vector Xo E JEFO into JEF1 . Write this operation 
as Go(EoXo + Vo), where Go is the embedding matrix, Eo maps SOLG to JEF0 
and Vo is the boundary data (affine component). 

Denote the new unknown vector by Y1 and scale it. The new system takes the 
form C1X, = Bl, where X1 = Go(EoXo + Vo) + D1Yl. So the new matrix is C1D1 
and the new right-hand side is B, - C0GO(EoXo + Vo). 

In an analogous way we solve this system approximately and increase the order of 
jets by one. Again, from C2X2 = B2 we arrive at C2D2Y2 = B2-C2G1(E1X1+V1). 
The condition numbers of the new operators C2D2, ClDl, Co and maximal values 
of the new right-hand sides are given in Tables 1-9 and in Section 6. 

The embedding operators can be constructed in different ways. We have used in 
our computational scheme the following embeddings JEFi > JEFi+1 from level 0 
level 1: 

UOO0 = UOO 5 

U1'0 = (Uo'o -u UO0)/2, 

U = (Uoz-Uoz3)/2; 

and embedding from level 1 to level 2: 

UOZ5 = UOZ5 

U&3 = UJZ0 

U0Z5 = U0Z15 

0z 
I 

UOZOI UOZ3 _UOZ4 
Z 3 l 4 2 

20= -h(U 00 + U003- - ??)- h( - 02 + U10 Z02 

U2l = 4hU14h -UiO ? U0l U0 U)U 

UZ5 - ZUl1 
UOZ3 

UZ4 UZ2 + 
T'Z3 _UZl Z4 UZ 

U02 h2 U( ? U+ - ??- U?) + 4h (U01- U1 + 1 - 1z )- 

5.4. Explanation of tables. All calculations were performed with the Mathemat- 
ica 2.2 program on an IBM RS6000 computer. For some values of parameters the 
resulting linear system was too large (more than 1000 x 1000) and the program did 
not succeed in inverting such a matrix. This is marked by a * in the corresponding 
position of each table. 
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Discretization errors, Dirichlet problem. In Tables 1-3 we give the results of the 
comparison of the solution of the discretized problem and the analytic one. The 
following solution was used: u(x, y) = e3X sin 3y. The domain Q = [0,1] x [0,1]. 
This function and its first and second derivatives have the range [0, 20], [-60, 60], 
[-180,180]. 

Table 4 represents the condition numbers of the linear systems we have to solve 
for the full method and for its multiscale implementation. 

Tables 5-9 represent the convergence rate obtained. The rest of our experimental 
results can be found in Section 6. 

One can find similar experimental results for the Poisson equation as well as 
more detailed error analysis (maximum norm error, etc.) in Section 6. 

As far as the observed rates of convergence are concerned, let us compute (fol- 
lowing the referee suggestion) the following quantity. 

TABLE 1. Dirichlet problem. Discretization errors in jet-form. An- 
alytic solution: e3x sin 3y. Triangular method, boundary jets fixed. 

N \ k 0 1 2 

3 {0.95} {2.810-3, 2.8, 0.2} {l.10-6, 8.510-3, 6.10-4, 8.5, 0.6} 

5 {0.3} {0.03, 0.89, 0.36} {2. 10-3, 0.09, 0.07, 2.67, 1.} 

9 {0.08} {0.0079, 0.23, 0.096} {7.710-4, 0.02, 0.02, 0.7, 0.3} 

17 {0.02} {0.002, 0.06, 0.02} 

TABLE 2. Dirichlet problem. Discretization errors in jet-form. An- 
alytic solution: e3x sin 3y. Full method, boundary jets fixed. 

N k 0 1 2 

3 f{0.95} {2.810-3,5.110-2, 3.510-3} {1.210-6, 4.210-5, 2.910-6, 0.026, 2.10-4} 

5 {0.3} {7.10-5, 1.910-3, 1.310-3} {1.210-6, 3.310-6, 7.710-7, 9.10-4, 2.210-5} 

9 {0.08} {2.1 10-6, 4.610-5, 3.410-5} {6.10-1o, 2.310-9, 4.910-9, 1.6 10-6, 1. 10-7} 

17 {0.02} {4.0 10-8, 9.0 10-7, 6.4 10-7} 

TABLE 3. Dirichlet problem. Discretization errors in jet-form. An- 
alytic solution: e3X sin 3y. Full method, true Dirichlet boundary 
data. 

N \ k 0 1 2 

3 {0.95} {2. 10-3, 6.7 10-3, 0.05} {3.3 10-4, 0.003, 0.001, 0.06, 0.02} 

5 {0.3} {1.5 10-4, 5.5 10-3, 1. 10-3} {3.2 l0-7, 3.1 10-6, 1.2 10-6, 2.3 10-4, 1.2 10-4} 

9 {0.08} {5.1 10-6, 2. 10-4, 3.8 10-5} {4.1 10-10, 1.3 10-8, 3.2 10-9, 1.6 10-6, 1.3 10-6} 

17 {0.02} {1.1 10-7, 9.1 10-6, 1. 10-6} * 
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TABLE 4. Condition numbers, full method, the whole boundary 
jets are fixed. 

without multiscaling with multiscaling 

N \k 0 1 2 0 1 2 

3 1 1 1 1 1 1 

5 5.83 105.5 3.7106 5.83 14.7 1.56104 

9 25.27 1341. 25.27 57.5 5.56 104 

17 103.1 1.23 104 * 103.1 230 * 

TABLE 5. Dirichlet problem triangular method. 

h k 0 1 2 

_ 1.66 -3.4 -11 

1~i 1.91 1.93 1.4 
48 

:16 2 2.0 * 

TABLE 6. Dirichlet problem full method. 

h k 0 1 2 

1 
1 1.7 5.4 0 2 4 

1 1 1.9 5.1 11 

8 1 2 5.7* 
8 16 

TABLE 7. Poisson problem triangular method. 

h k 0 1 2 

1.7 -3 -10 

lI X 1.9 1.9 1.2 

11 2 21 
8 16 

Each of our tables contains the jet discretization errors for the same problem 
with the gridstep h equal to 2 I I respectively. Compute for each gridstep h 
and each k = 0, 1, 2, the convergence rate 

1In 
error(h 

In 2 n error(h)) 

We get Tables 5-9 (only the errors in zero-order term are used). 
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TABLE 8. Poisson problem full method. 

h k 0 1 2 

. 1 .7 5.1 -1.1 

1 1 1.9 5.1 8.8 4 8 

8'1.1 2 5.7 * 
18 16 

TABLE 9. Dirichlet problem full method, true boundary data. 

h k 0 1 2 

1 1 1.7 3.7 10 2 4 

1 
1 1.9 4.9 9.6 48 

8:16 2 5.5 * 

We agree with the referee's observation that these results (also seemingly the 
case k = 2, h =16 has not settled down in the asymptotic range yet) suggest that 
the triangular method restricts the rate of convergence to the second order. 

On the other hand, the above results support the high convergence rate for the 
full method, both for the full-jet boundary data and for the "true Dirichlet data". 
(A possible explanation of such a big difference between the triangular and the full 
methods may be that the relaxation scheme local error for the full scheme is of 
order (h12, h10, h8) for the values, the first and the second derivatives, respectively, 
while for the triangular scheme this error is of order (h12, h8, h4). See Section 6 for 
results of symbolic calculations. 

6. SUPPLEMENT 

To find the optimal parameters W4 and RZ described in Section 4, we have solved 
the corresponding equations symbolically. This section contains results in a final 
form of the optimal weights for different nodes and schemes. A regular grid with 
stepsize h was used. 

6.1. Internal nodes. Here we list the matrices Wl defined above which we have 
obtained by symbolic calculations. We assume that the grid G is regular with 
stepsize h and for each internal node its 4 neighbors are defined by the standard 
stencil. The neighbors are ennumerated in the following way: 1-North, 2-East, 
3-South, 4-West, 5-central node. 

When k = 0, obviously the standard weights W1 = W2 = W3 = W4 = for both 
full and triangular cases are best possible. They lead to errors in values of order 
h2Tr 

4! U40 

Triangular case k =1. Optimal weights (matrices W) are 
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2 5 4 
2 4 

3 

FIGURE 6.1.1 

Corresponding errors (in jet-form): {-h8 U80, h 4 U,,o h4U41U . 

Full case k = 1. Optimal weights (matrices W) are 
0 h \/ h o 1 1 -h o 

0,~~~0 4, 0, 0 0h 

4' 16 4 16'4T6 

07 4 J\o 24)}77 
7247 

0 h7 

W 1 = O O 1 h5 0 1 h 

24' OI,I-0, 6' 0, 0, 4, 0 0 ~~~0, 0, 0, 0, 0, 

Corresponding errors (in '24-form), t2, ?, 8 U ) (, U 

8h'~~~ ~? ' 0 ?' -2' ?' 3 

jet-form): 
{2F U80 3=4 U 30 2 4 

Triangular case k = 2. Optimal weights are 

0,~~ ~~ 0, ~ 0, -0- 4, 

0, 0, 0, 0 0 

4, 0, -t2 Cl - t3 0 Cl +t3 
0 , 0 , 0, 0, 0, 0 

0, 0, 0, 0, 4, 0 

0, 0, 0, 0, 0, 4 
4 7~~~~~ 

4,t2, 0, C2 +t3, 0, C2-t3 

?' 4' 1' 32' ?' 32 

4= 0, 0, 0, 1 0 0 

0, 0, 0, 0, 1 0 
4' 

0, 0, 0, 0, 0, 1 

1~~~~~~~~6 
7 4 7 32' ' 32 

1 h~~~1 
W2 , 4,~ 1 1 

07 07 07 4 0, 0 
0, 0, 0, 0, 0 

4'7 
0, 0, 0, 0, 07 1 

0, 7 2 Cl2+t3, 0,' Cl2-t3 

0,4 7 16' I 
0, 0, 0, -h 0, 0 

3 0, 0, 0, 0, 1 0 
4'7 

\0, 0, 0, 0, o, 1 
4 
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where c1, C2 are arbitrary constants which we choose to be 0, and t2 = llh/128, 
t3= h2/256. Corresponding errors (in jet-form): 

h12u h 8 h8u h4 h4 
4 

{ 12! U8-8! U -8! U)'4! 4! ' 4! 

Full case k = 2. Optimal weights are 

4, 0, -t2, Cl - t3, 0, Cl + t3 

0, t7, 0, 0, -t8, 0 

to, 0, -t9, o, 0, t0O 
1- 

-t4, 0, -t5, t6, 0, 0 , 
0, tii, 

0, 0, z1 
? 

t4, 0, t5, 0, 0, t6 

4, t2, 0, C2 + t3, 0, C2-t3 

-to, -t9, 0, -tio, 0, 0 

W - 0) 0, t7, 0, t8, 0 

t4, -t5, 0, t6, 0, 0 I 
?, ?, -tii, 0) -16 ? 

-t4, t5, 0, 0, 0, t6 

1 0, t2, Cl-t3, 0, Ci +t3 

0, t7, 0, 0, t8, 0 

V = -to, 0, -t9) 0, 0, -tiO 
W3 -t4, 0, t5, t6, 0, 0 

?, -tii, 0, ?0 06 16' 
t4, 0, -t5, 0, 0, t6 

/4, -t2, ?, C2 + t3, 0) C2-t3 

to, -tg, 0, tio, 0, 0 

W 0, 0, t7, 0, -t8, 0 
W4= t4, t5' 0, t6? 0, 0 ? ' 

?, ?, tii, 0) -16 ? 

-_t4, -t5, 0) 0) 0) t6 

where c1, c2 are arbitrary constants which we choose to be 0, and t2 = llh/128, t3 = 

h2/256, t4 = 75/8h2, t5 =-165/32h, t6 = 23/32, t7 = 11/224, t8 = h/112, t9 = 

113/448, tio = llh/448, t1i = 5/16h. 
The corresponding errors (in jet-form): 

12! U84 -8! 462 U92 8! 462 U83 -8! U82 -9! U91 8! U82 

We have given all the optimal weights for internal nodes of a regular grid (four 
neighbors). 

6.2. Boundary optimal weights. For boundary nodes the matrices W1 have an- 
other form, since there are only 3 neighbors, which we ennumerate in the following 
way. 

The last matrix in each case corresponds to 5-th neighbor (that is, to the node 
itself). They correspond to the derivatives along boundaries which are given as 
boundary data. 
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Numeration of neighbors at boundary nodes 

1 _ _~~~~~~~~~~~~~~~~~ 

2 4 3 3 3 4 

South East North West 

FIGURE 6.2. 1 

Tri'angular case k = 1 boundary nodes. Optimal weights (matrices W) are: 
South boundary (neighbors 1,2,4,5): 

/0, 0 0) (0, 0, o 0, 0, o /1, 0, o\ 
0, 0,0,1 0,0 o) , 0,01 0, 1, 0f; 
\\, 0, 0/ )o -', 1J \ ) 1, 1J \ , 0, 0,/ 

North boundary (neighbors 2,3,4,5): 

0,0, 0)0)0 0) (0)0 0) (1) 0, 0) 

(0, 0, 0 (o 0, o\/o 0, o\ /1, 0, 

I ~ ~~~ II 1 01 i lo 00Y 

0, 0 1 0, 0, 0110, 0, 0' 0' 

2 5~~4 4 2 4 1 4 l 

WEast boundary (neighbors 1,23,45): 
0o, 0, 0 l o, 0, , 0l 11 0, 11 

Correspondn eo I co o ne of 1 
fir1s t- o di s a of order 

41~ ~FGR 6. 2. 41 

gul r case k = 1 b oundary nodes. Optimal weights (matrices W) are: 

South boundary (neighbors 1,2,4,5): 

r 1?, 0, ? 0, 0, o, o\ 110 o, 

o,o o\ o,o, o\1o o, o\11 o, o\ 1 

orrt boundary (neighbors ,2,3,45): 
((0, o, U31o 

Wsoth boundary (neighbors 1,3,4,5): 

r 1?, ?, ?\ 1?0, ? o 10, O, 0, 01 ,o 

l \0, 0, 0 \0, 0, 0 J \0, ,l 0J 0 0, 1J ) 

h3 h3- 3 1 1 13 - 7 0 6 4 h' 3 24 2 4h 8 24 3 

North boundary (neighbors 12,34,5): 

0 t, O, O0 I 0, O, O\ 1 O, O, O\ 11 O, O\ -1 -1 o o 5t ol o 1 -1 1 1 7_ 0 0 
4h' ' 324h ' 8 24 4 24h' 8' 24 3h ' I 



FORMAL NUMERICAL SOLUTIONS OF ELLIPTIC PDE'S 221 

East boundary (neighbors 1,2,3,5): 

0, 0, \(0 0, 0) ( 0, 0, \ (1, 0, \ 
{ -13 1 1 1 -5 :1 o 0 -13 _ 1 1-7- 0 07W ) 24h ' 24 ' 81',4h' 3' I 24h' 24' 8J' 3h' 

0, 0, 0 0, 0, 0J 0, 0, 0/ 0, 0, 1/) 

West boundary (neighbors 1,3,4,5): 

0, 0, 0 0/, 0, 0 70, 0, O\ (1, 0, O\] 
{(13 1 .-1 13 1 1 (5 - , o - 7I 0, K 

24h' 24' 8 24h' 24' 8 4h' 3 3h 
0, O, 0 \ 0, O, 0 \0, 0, 0J ko, O, 1/J 

Corresponding errors in components of first-order derivatives are of order 
h5 h5 
6!3 U60 i 6!3 U51- 

Triangular case k = 2 boundary nodes. Optimal weights (matrices W) are: 
South boundary (neighbors 1,2,4,5): 

0 O, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 
0) 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 
0, O, O, 0 0 -h O, O O O, 

h 
O 

O, O, O, O, O, O 16 4' 16' 
0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 

?, 0, 0, 0 
1 

0 0, 
0, 0, 0, 0, 0 0, 0, 0, 0, O, O, 

wizzrK o : 0: '0 W2j0 1 1 01 0 01 

O, O, O, O, O, O tO 0, 0, 0, 0, O 
O, O, O, O, O, h 0 O, 1, 0, 0, 0, 0 

W4 K 16' 4 16' 0 W0, , 2, 0, 
o, 0, o2 0,, 0, 0, 0, 1, 0, O 
?, 0, ?' 8' 4' 8 0, 0, 0, 0, 0, 0 

O, O, O, O, O, ? /1,O0, O, O, 0, 1 

North boundary (neighbors 2,3,4,5): 

O, O, O, 0, 0, O, O 0, O, O, O 

O O, 0, 0, 0, O , 0 (0, 0, 0, O, O 

o, o o0, 0, 0, 0, 0, ,' 0, ? 

ol o ol 1 1 -1 0 0 0 1 0 16 4 16 
I,2 

\0, 0, 0, 0, 0, 0 1\0, 2'0 , , O 

0, 0, 0, ol ,0 , 0, 0, 1 
ol 

1, 1 
, o , -h 0 U, l 

-h 
o 

ol ol ol ol ol 0 ~~~~0, 0, 0, o 0 

o o 1 1 10 0, 0, 0, 

W4 0, 0, -1 1 1 'oo o 
\ 0, 0, 0, 0, 0 o lo lo 

East boundary (neighbors 1,2,3,5): 

0, 

o 
0, 0, 

o lo 
01 

0,0,0, ol 1 1 ol - Io 1 1 2l L I0, 4'1 16' 0 16' 0, 0,8 ol ol ~~~~~~~~o, 0, 0 ol0, 0, 0, 0 

~0 ,0, 0, 
0, 

0 o l 0, 
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O 0 ,0 , 0, 0,0 1 0 O, O, 0, 0, \ 
oI1 -1 I 0 0, o,0 , 0, - h1 
?' 4' 16 ' ' 16)' ?? v ? v ? 2 

W3 0, o0, 0, 0, 0, 0 W5 0 1 0, , 1, 0, 01. 

?, 0 ? 810 01 01 0, 0, 0, 0 

O0, 0, 0, 0, 0 0) O, O, O, O, 

West boundary (neighbors 1,3,4,5): 

O, O, 0, 0, 0, 0 0, 0, 0, 0, O, 0 
ol 16'1 l 16 0, 

1 
1 0, -h o ' 4 ' 16 ' ' 16 ' 0 4' 16' 16' 

- O, O, O, O , 0, 0 0 , 0, 0, 0, 0, 1- 0, 0, 0, 00, , 0 , W3 0, 0, 0, 0, 0, 0 

?, 0, ?' 8 1 4' 8 ol ol ol 4 80, 0, 

O, O, 0, O, O0 1, O, O, O, O, O 

~~~~~~~~~0, 0, 0, 0, 0, 
o l 0 

0, 0, 0, 0, 0, 01 0, 0, 1, 0, 0,O 

o4 0, ? ?v ?' 2 , 0 , 0 , 0 , 0 , 0 , h 

0, 0, 0, 0, 2, 0 O, 0, 0, 1, 0,O 
0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0,1 

0, 0, 0, 0, 0, 0 l o l o l 1 

Corresponding errors are of order 7U80 for first order derivatives and of order 

LU41 for derivative 0,y. 

Full case k = 2 boundary nodes. Optimal weights (matrices W) are: 
South boundary (neighbors 1,2,4,5): 

O', 0, 0, 0, 0, 0 
O, O, O, 0, 0, 0 

W, = 32h '? 2243 224 1 
0, 0, 0, 0, 0, 0 

?' 8h' ' ' 8' / 
0, 0, 0, 0, 0, 0 

(0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0 

213 137 11 llh h -llh 
W2 448h' 896 ' 224' 2567' 112' 256 7 

0, 1 , 0 , 0, O , O 
-105 -35 -5 -3 -1 3 
32h2 ' 32h' 16h' 64' 16' 64 

O, O, O, O, O, 0 

0, O, O, O, O, 0 

O, O, 0, O, O, 0 
213 -137 11 llh -h -llh 

W4= 448h' 896 ' 224' 2567' 112' 256.7 
0, 0, 0, 0, 0, 0 

105 -35 5 3 -1 -3 
32h2 32h' 16h' 64' 16 ' 64 

O, O, 0, O, O, 0 

1, O, O, 0, 0, 0 

O, 1, O, 0, 0, 0 
_3 0 , h 00I 

= 14h ' ?' ?'56' ' 

O, O, O, 1, 0, 0 

kO, O, O, 0, 0, 1 
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North boundary (neighbors 2,3,4,5): 

O, 0, O, 0, O, 0 
O, 0, O, 0, O, 0 

-213 -137 11 -llh h llh 

W2 448h' 896 ' 224 ' 256-7 ' 112' 2567 7 

o, 0, o, 0, o, 0 , 
105 35 -5 3 -1 -3 

32h2 32h I 16h ' 64 ' 16 ' 64 
0, O, 0, 0, O, 0 

1o, O, 0, 0, 0, 0 

0, 0, 0, O, O, 0 
-45 0 -113 0l 0 -llhI 

W3 = 32h' ' 224' 0 ' 224 
o, 0, 0, o, o, 01' 

?' 8h ' ' ? 8' ? 
0, O, 0, O, 0, 0 

0, O, 0, O, 0, 0 

O, 0, O, O, O, 0 
213 137 11 -llh -h llh 

- 448h' 896 ' 224' 256-7' 112' 256-7 4 0, 0, 0, 0, 0, 0 j 
-105 35 5 -3 -1 3 
32h2 32h '16h ' 64 ' 16 ' 64 

O, O, O, O, O, 0 

1 0 O, O, O, 0, O 

O, 1, O, 0, O, O 

0, o 0 -3h l0, W5 = 14h ' ?' ?' 56 ' ? 

O, O, O, 1, 0, 
0,5 o 0, o 

O, O, 0, 0, , 

East boundary (neighbors 1,2,3,5): 

W, 

O, 
O, 0, 0, 

O 
-213 11 137 llh -h -llh 
448h' 224 ' 896' 256-7' 112' 256-7 

W1= O, O, O, O, O, O 
O, O, O, O, O, O 

-105 5 35 3 1 3 
32h2 ' 16h' 32h' 64' 16' 64 

O, O, O, O, O, O 

(0 0, 0, 0, 0, 0 
-45 -113 0 -llh 0 0I 
32h' 224' ' 224' ? 

0, O, 0, O, O, 0 
0 0, o, 0, 0, o, 01' 

0, 0, 8h' ' 8' ? 

0, O, 0, O, O, 0 

O, O, 0, O, O, 0 
-213 11 -137 llh h -llh 
448h' 224' 896 ' 256.7 112' 256-7 

W- 0, O, 0, 0, O, 0 
0, 0, 0, 0, 0, 0 , 

105 -5 35 -3 -1 3 
32h2 16h 32h 64 16 64 

O, O, O, O, 0, 0 

1, O, 0, 0, 0, ? 

0 0, 0, 0, 0 
33 1, 0, 1, 0, 0 

W5 = 14h '5,0,060 3 

O, O, 0, 1, 0, 56. 

O, O, O, 0, 0, 0 
0 0, 0, 0, 1 
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South-West South-East North-East North-West 

1 6' :6 i '2 5 5 4' 

i I2 

5 4: :2 5 '6 3 3 6: 

FIGURE 6.3.1 

West boundary (neighbors 1,3,4,5): 

0, 0, 0, 0, 0, 0\ 
213 11 -137 -llh -h llh 

448h' 224'1 896 ' 256.7' 112' 256-7 

0, o 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0 I 

105 5 -35 -3 -1 3 ) 

0, 0, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0\ 

ts213 11 137 -llh h llh 
448h 224 896 256-7 112' 256-7 

0, o 0l 0, 0, 0, 0 
O, O, O, 0, O, 0 I' 

-105 -5 -35 -3 - 1 =3 

32h2 16h 32h' 64' 16' 64 

O, O, O, 0, O, 0 

O, 0, O, O, O, 0 
45 -113 0 llh 

32h' 224' ' 224' ?' 0 
oW 0, o, o, o, 0 

0, 0, O, O, O, 0 

O, O, O,1 o, O O 32h 0 224 v 224 v8h ' 8' 

4- 0, 0, 0, 0, 0, 0 
O,33 O, O 0, 0, 0 O 

14h 1 ~~~~~56 
1, O, O, 0, 0, 0 

w 4j o' 0 0, 0, 1 
0, 0, 0, 1, 0, 0o . 

O, O, O, 0, 0, 0 

Corresponding errors are of order 37!8 U82 for first order derivatives and of order 
h7 U81 for derivative o9Ay 

6.3. Opiimal weights at corners. At each corner node we define the following 
nodes as neighbors: ennumeration of neighbors is shown in Figure 6.3.1. Each cor- 
ner has 3 neighbors, since otherwise in the triangular case there is linear dependence 
between rows of the linear operator when k = 2. For k < 1, these corner nodes do 
not play any role since all derivatives are known. 

The value of Ulo is known because we can differentiate the given function pO 
along x-direction and in the same way as the Uo1 derivative. The situation changes 
for k = 2 since the U1l derivative cannot be found from the boundary data. Thus 
for k = 2 the fifth lines of W1 matrices (corresponding to the axo9y derivative) are 
important. 
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Triangular case k = 2 boundary nodes. Optimal weights (matrices W) are: 
South-West corner (neighbors 1,4,5,6): 

O, O0, 0, 0, O, , 0, 0, 0, O 
O, O, O, O, O, 0 O, , 0, 0, 0, O 

W1 ol o0, 0, 0, 0, 0, 0 W4 0, 0, 0, 0, 0, 0 

O, O0 O, -, , , , 1, 1, 0 

0, 0, 0, -, -1, 0 O , O, O, O, O 

O, 1, O, O, O, 0 O, 0, 0, 0, O,O 

0, 0,0, 1 0, 0 , !0,0 0, 0, 0,0 

O, O, O, 1, O, O O, O, O, -1, 1, 0 

O, O, O, O, O, 1 O, 0, O, 0, O, 

South-East corner (neighbors 1,2,5,6): 

(O, O, O, 0, 0, O O, O, 0, 0, 0, 0 
O, O, 0, 0, 0l 1, 0, O, 0, 0 

W = O0, O, O, 0, 0, 01 W2 , 0, 0, 0, 0, O 0, 0, 0, 0, 0, 01 0, 0, 0, 0, 0, 01 
O, O, O, 1, -1, 0 O, O, O, -1, 1, 0 

\\, 0, 0, 0, 0, O0 0, 0, 0, 0, 0, 0/ 

1, O, 0, 0, 0, 0 O, O, O, O, 0, 0 

O, 1, 0, 0, 0, O O, 0, 0, 0, 0, O 

W5V 0, 0, 1, 0, 0, 0 W6= 0, 0,0, 0, 0,0 lo, 0, 0, 1, , o 10, 0, 0, 0, 0,0o 
O, 0, 0, -1, 0, O O, O, O, 1, 1, 0 

O, O, 0, 0, 0, 1/ O, 0, 0, 0, 0, 0! 

North-East corner (neighbors 2,3,5,6): 

O, O, O, O, O, 0 O, O, O, O, O, O 
O, O, O, O, O, 0 O, O, 0, 0, 0, 0 

W2= O, O, O, O, O, 0 W 1 O, O, 0, 0, 0, 0 
0, 0, 0, 0, 0, 0 , 3- 0, 0, 0, 0, 0, 01' 
O, O, 0, 1, 1, 0 o, O, O, -1, -1, 0 
O, 0, 0, 0, 0, o O, O, 0, 0, 0, O,/ 

1, O, O, O, 0, 0 O, O, O, O, 0, O 
O, 1, O, O, 0, 0 O, 0, 0, 0, 0, O 

W5 0, 0, 1, 0, 0, 01 W6 0, 0, 0, 0, 0, 
10, 0, 0, 1, 0, 01 1//6 0,,0 0, o, ol 
O, O, O, 1, 0, O O, O, O, -1, 1, 0 

O, O, O, O, 0, 1 \, 0, O, 0, 0, O0 

North-West corner (neighbors 3,4,5,6): 

70, O, O, O, O, 0 7, O, O, O, O, O 
1, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, O 

W3 0, 0, 0 , 0, 0, 0, 0, 010, 0, 0, 0, 0, o W3 
l 

j 0, 00, 0, 01 oI 0,,0 0, 0, ol 
O, O, O, 1, -1, 0 O, O, O, -1, 1, 0 

O, O, O, 0, 0, O0 \0, 0, 0, 0, 0, 0/ 
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1, O,0, 0 00 0 , 0, O, , 

O, 1, 0, , 0, 0, 0, , 0, 0, 

W - O, O, 1, 0, 0, 0 
, 6 0, 0, 0, 0, 0, 0. 

O, O, O, -1 , O, O O, O, 0 , 0 , 0 , 
0 

0,O , O , 1O, 0, O,~ 0,0,0, O 
05 0, -1, 0, 50 0 51 

W5 0L 0, 0 0, 5 ~ 50 0, 4 1, 1, 0 

Corresponding errors are of order h3 U41 for derivative 9,9, 

Full case k = 2 boundary nodes. Optimal weights (matrices W) are: 
South-West corner (neighbors 1,4,5,6): 

/0, 0, o, 0, o0, 0, 0, 0, 0, 

10, , 0, 0, 0, 10, 0, 0, 0, 0, 

W o o, o, o, o, 03 W o, o, o, o, 0, 
1- 0, 0, 0, 0, 0, 0 , 

14 0, 0, 0, 0, 0, 
0 , 

24 7 -7 0 24 7 7 0 0 

O, O, On, 0, -1, 24 
O, O, 0, O, , O 

05 
7~~~~~ 

5 
h h 

1, 0, 0, 0, 0, O 0, 0, 0, 0, 0, O 

10, 1, 0, 0, 0, 0 , 0, , 0, 0, O 

W5 0, 0, 1, 0, 0, 0 W6 0, 0, 0, 0, 0, 0 

-24 -7 - y -24 7 

O, 0, 0, 0, 0, 1 O 0, O, 0, O, O 

South-East corner (neighbors 1,2,5,6): 

0o, 0 0 0, 0 0 0 0, 0, 0, 0, 0, 

0o, 0 0 0, 0 0 1 0, 0, 0, 0, 0, o 

1- 0, 0, 0, 0, 0, 0 1 
2 0, 0, 0, 0, 0, 0 . 

-24 7 7 1 0 -24 7 h 07 -1. 0 

0, O, 0, 0, 0, O 0, 0, 0, 0, 0, O 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

0, 1, 0, 0,0 , 10, , 0, 0, 0, 0 

W5= 0, 0, 0, 1, 0, 0 W6 0 0 0, 0, 0, 0 ; 

24 -7 0 0 1, 0 ? 24 7 ,, 0 - 0 h7 5 - 17 0, , h7 5T 5 h 
0, 0, 0, 0, 0, 1 0, 0, 0, 0, 0 O 

North-East corner (neighbors 2,3,5,6): 

/0, 0, 0, 0, 0, 0\ 0, 0, 0, 0, 0, 0 

10, 0, 0, 0, 0, 0 0, o o, 0, 0, o0 

W2 0, 0, 0, 0, 0, 0 , W3 10 0, 0, 0, 0 1 
24 7 - 7 0, -1, 0 24 -7 h7 

05 -1, 0 

JO, 0, 0, 0, 0, O , O' 0, 0, 0, O 

1, 0, 0, 0, 0, 0 O, 0, 0, 0, 0, / 

, 1, 0, 0 , O' 0, 0, 0, 0, 0, O 

0, 0, 0, 1, 0, 0 0, 0, 0, 0, 0, 0 

-24 7 7 0 -24 7 h 0 
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North-West corner (neighbors 3,4,5,6): 

O, O, O, O, O, O O, O, 0, O, O, O 
O, O, O, O, O, O O, O, O, O, O, O 

W3= 0, 0, 0, 0, 0, 0 , W4= 0, 0, 0, 0, 0, 0 

-24 -7 -7,0, -1 0 -24 7 7 0 -_I J 
O, O, O, O, O, O) O, O,0, O, O0, 

0, 0, 0, 0, 0, 0, O, O 

O, 1, 0, 0, 0, O U, 0 , 0 , 0 , O 

W5= 0, 0 50, 0, 0 , 0 W6 0, 0, 0, 0, 0, 0. 

24 7 w7 0, , 0, 0 7 , 0, 0-1 0 

O, 0, 1, 
O, O, 1 , 0, 0, 0, 0, O1 

Corresponding errors are of order 1h U9i for derivative &9j4,. 

6.4. Completion operators. As was mentioned in subsection 4.2, the accuracy 
we obtain by recovering a 2-order jet by its neighbors (assuming the Whitney 
functional to be sufficiently small) is much higher than the accuracy that can be 
achieved by using only values. This means that by straightforward use of jets of 
order 2, we allow errors of order of h3 and have no benefits from the high accuracy 
of coefficients of this jet. However, in this scheme we suggest that one can also 
recover the higher derivatives from neighboring jets of order 2. Their accuracy is 
balanced in terms of degrees of h. 

Assume that jets of second order of a harmonic function are known at 5 points 
(forming our stencil). One can find matrices Ql, 1 = 1, 2,3,4,5 of dimension 
dim Jet11 x dim Jet2, such that the linear combination 5 QlU2Z1 reconstructs jet 
of order 11 of the original function at the middle point. The following table shows 
unreducible errors in terms of orders 2-11; here symbol (2,1), for example, means 
an error in the term corresponding to A etc. 

(3,0) -* _ U13,0, (2,1) 10! U12 1 
15! 2156 101170 

(4,0) - o(h9), (3)1) 11! U11,1, 

2h8 2h8 
(5, 0) U13,0, (4,1) U12,1, 

(6, 0) >o(h8), (5) 1) 120h8 U1351 13! 131 

(7,0) 6! 170U13,0, (6,1) U26!1, 

2h4 

(8, 0) o o(h 5), (7,1) > !3U11l,, 

(9) o) > !3 U135,0 (8, 1) 6!3 U121) 

(10,0) -o(h5), (9,1) S!l43U13,l, 

7h 2 7h 2 

2340 2340 
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As an example of the completion matrix Qi for the full scheme k = 2, lines from 
(3,0) to (10,1) are listed below (the previous lines from (0,0) to (0,2) are given by 
the corresponding W1). The matrices have only 5 columns since by the equation 
(2,0) components of formal solution are always equal to (0,2) components, which 
means that only 5 coefficients are independent (that is dim Sol' = 5 at any internal 
node z). 

0, -59/240h2, 0, 0, 1/30h 
-231/32h3, 0, 883/480h2, 1/480h, 0 

18/h4, 0, -57/16h3, -3/16h2, 0 
o, -21/8h3, 0, 0, 3/8h2 
0, 12/h4, 0, 0, -3/2h3 
0, 0, 12/h4, 3/2h3, 0 

-1575/2h6, 0, 1035/8h5, 45/8h4, 0 
0, 135/2h5, 0, 0, -15/2h 

-5775/h7, -273/h6, -5775/4h6, 385/4h5, 21/h5 
Qi = 10395/2h7, 0, -35492/h6, -273/2h5, 0 

-30240/h8, 0, 9450/h7, 630/h6, 0 
0, 945/h7, 0, 0, -315/h6 
0, -10080/h8, 0, 0, 2520/h7 
0, 0, -10080/h8, -2520/h7, 0 

4762800/h10, 0, -1077300/h9, -56700/h8, 0 
0, -113400/h9, 0, 0, 22680/h8 

26195400/h11, 914760/hl, -6548850/hl, -436590/h9, -166320/h9 
-13097700/hll, 0, 4698540/hl, 457380/h9, 0 

6.5. Explanation of the tables. All calculations were performed with the Math- 
ematica 2.2 program on an IBM RS6000 computer. For some values of parameters 
the resulting linear system was too large (more than 1000 x 1000) and the pro- 
gram did not succeed in inverting such a matrix. This is marked by a * in the 
corresponding position of each table. 

Dimensions of subspaces. The grid G consists of N2 nodes among which there are 
4(N - 1) boundaries and (N - 1)2 internal nodes. Dimension of the JEF space is 
#G * dimJet. After imposing all restrictions from the differential equation, its 
corollaries and boundary conditions, we get the dimension of the subspace of global 
formal solutions. The results are represented in the following table, where dim1 
is the dimension of JEFG, dim2 is the dimension of SOLG when we consider true 

TABLE 6.1 

dim, dim2 dim3 

N \k 0 1 2 0 1 2 0 1 2 

3 9 27 54 1 7 17 1 3 5 

5 25 75 150 9 39 73 9 27 45 

9 81 243 486 49 175 305 49 147 245 

17 289 867 1734 225 735 1249 225 675 1125 
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boundary restrictions see (see subsection 4.3), and dim3 is the dimension of SOLG 
when we consider all boundary jets fixed. 

Discretization errors, Dirichlet problem. In Tables 6.2-6.21 we give results of the 
comparison of the solution of the discretized problem and the analytic one. Two 
types of solutions were used: u(x, y) = x7-21x5y2 + 35x3y4 - 7xy6 and u(x, y) = 
e3x sin 3y. The domain Q = [0, 1] x [0,1]. The first function takes values from [-3,8] 
on Q (approximately), and its first derivatives vary in intervals [-20,20] and second 
in [-170,170]. The second function and its first and second derivatives have the 
range [0, 20], [-60, 60], [-180,180]. See pictures at the end. 

Now we study only properties of the discretization scheme and not the boundary 
and corners effects. So as the boundary data we have taken the whole jets of true 
solution both on the boundary and at corners. 

The precise results of our computations for full method with k = 2 when the 
true solution has a form of a polynomial of degree 7 (see Tables 6.4 and 6.20) are 
explained by the fact that the scheme we use has a discretization error of order 
of tenth derivatives (see 5.1, 5.2, 5.3 full case, k = 2). Hence it is precise for all 
harmonic polynomials of lower degree. 

Maximal values in the right side, Dirichlet problem. In Tables 6.6-6.9 maximal ab- 
solute values of the right-hand side of the corresponding linear system of equations 
are given, as explained in subsection 6.1. 

Discretization errors, Poisson problem. Discretization errors for a Poisson problem 
with f =-16(x2 + y2) sin 4xy are given in Tables 6.10-6.13. The same domain and 
grids are considered as in the Dirichlet case. 

Maximal values in the right side, Poisson problem. In Tables 6.14-6.17 maximal ab- 
solute values of the right-hand side of the corresponding linear system of equations 
are given, as explained in subsection 6.2. 

Multiscaling. Tables 6.18 and 6.19 contain information about condition numbers 
with and without multiscaling. The multiscaling effect on the right-hand sides is 
reflected in Tables 6.6-6.9 and 6.14-6.17 as mentioned above. 

Dirichlet boundary data. Discretization errors and condition numbers for the 
scheme implemented with true boundary data (see subsection 4.3) are given in 
Tables 6.20-6.22. Note that in this case the dimensions of the corresponding ob- 
jects are bigger; see column 2 (dim2) in Table 6.1. 

TABLE 6.2. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: x7 - 21x5y2 + 35x3y4 - 7xy6. 

N\k| 0 1 2 

3 {0.547} {0, 0, 3.3} {0, 0, 0, 6.6, 6.6} 

5 {0.220} {0.027, 0.29, 0.92} {0.002, 0.07, 0.08, 1.8, 1.8} 

9 {0.059} {0.007, 0.08, 0.27} {8. 10-4, 0.02, 0.02, 0.5, 0.5} 

17 {0.015} {0.002, 0.02, 0.07} * 
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TABLE 6.3. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: e3x sin3y. Triangular method, boundary jets 
fixed. 

N\k k 0 1 2 

3 {0.95} {2.810-3, 2.8, 0.2} {1.10-6, 8.510-3, 6.10-4, 8.5, 0.6} 

5 {0.3} {0.03, 0.89, 0.361 {2. 0-3, 0.09, 0.07, 2.67, 1.} 

9 {0.08} {0.0079, 0.23, 0.096} {7.710-4, 0.02, 0.02, 0.7, 0.3} 

17 {0.02} {0.002, 0.06, 0.02} 

TABLE 6.4. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: x7 - 21x5y2 + 35X3Y4 - 7xy6. Full method, 
boundary jets fixed. 

N \ k 0 1 2 

3 {0.547} {0, 0.026, 0} {0, 0, 0, 0, 0} 

5 {0.220} {1. 10-5, 4. 10-4, 3. 10-5} {0, 0, 0, 0, 0} 

9 {0.059} {1.210-7, 5.610-6, 5.3 10-7} {0, 0, 0, 0, 0} 

17 {0.015} {1.1 10-9, 8.710-8, 8.710-9} * 

TABLE 6.5. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: e3x sin 3y. Full method, boundary jets fixed. 

N\k 0 1 2 

3 {0.95} {2.810-3, 5.110-2, 3.510-3} {1.210-6, 4.210-5, 2.910-6, 0.026, 2.10-4} 

5 {0.3} {7.10-5O, 1.910-3, 1.310-3} {1.210-6, 3.310-6, 7.7 10-7, 9. 10-4, 2.2 10-5} 

9 {0.08} {2.1 10-6, 4.6 10-5, 3.4 10-} {6.10-10, 2.3 10-9, 4.9 10-9, 1.6 10-6, 1. 10-7} 

17 {0.02} {4.0 10-8, 9.0 10-7, 6.410-7} * 

TABLE 6.6. Dirichlet problem. Maximal absolute values in right 
hand side, triangular method, the whole boundary jets are fixed. 
TIue solution: x7 - 21x5y2 35x3y4 -7xy6 

without multiscaling with multiscaling 

N\k| 0 1 2 0 1 2 

3 0.484 2.406 1.312 0.484 0.547 7. 

5 0.92 8.8 34.4 0.92 3.2 1.177 

9 2.31 17.75 58.1 2.31 5.03 0.242 

17 3.133 22.78 70.92 3.133 5.02 * 
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TABLE 6.7. Dirichlet problem. Maximal absolute values in right 
hand side, triangular method, the whole boundary jets are fixed. 
True solution: e3x sin 3y. 

without multiscaling with multiscaling 

N\k 0 1 2 0 1 2 

3 5.42 16.25 48.7 5.42 18.52 9.08 

5 5.01 18.14 54.4 5.01 15.55 1.332 

9 5.01 24.37 73.1 5.01 15.18 0.148 

17 5.01 27.29 81.87 = 5.01 15.06 * 

TABLE 6.8. Dirichlet problem. Maximal absolute values in right 
hand side, full method, the whole boundary jets are fixed. True 
solution: x7 - 21X5y2 + 35X3y4- 7xy6. 

without multiscaling with multiscaling 

N \ k 0 1 2 0 1 2 

3 0.484 0.875 5.25 0.484 2.828 1.312 

5 0.92 9.46 169.1 0.92 3.43 0.144 

9 2.31 30.28 2081 2.31 11.36 0.0106 

17 3.133 71.4 13791 3.133 51. * 

TABLE 6.9. Dirichlet problem. Maximal absolute values in right 
hand side, full method, the whole boundary jets are fixed. True 
solution: e3x sin 3y. 

without multiscaling with multiscaling 

N\k 0 1 2 0 1 2 

3 5.42 13.36 40.3 5.42 18.72 0.593 

5 5.01 40.1 1895 5.01 37.2 0.171 

9 5.01 90.2 9670 5.01 53.7 0.021 

17 5.01 27.29 43300 5.01 15.1 * 

TABLE 6.10. Poisson equation. Discretization errors in jet-form. 
Analytic solution: x7- 21x5y2 +35x3y4 - 7xy6 +sin 4xy. Triangular 
method, boundary jets fixed. 

N \k 0 1 2 

3 {0.513} {2.10-5, 0.18, 3.1} {3.610-7, 2.410-4, 7.10-4, 7.5, 6.3}1 

5 {0.2} {0.027, 0.35, 0.88} {0.003, 0.074, 0.084, 2.0, 1.9} 

9 {0.05} {0.007, 0.09, 0.26} {8. 10-4, 0.02, 0.02, 0.6, 0.5} 

17 {0.01} O {0.002, 0.02, 0.07} 1* 
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TABLE 6.11. Poisson equation. Discretization errors in jet-form. 
Analytic solution: e3x sin 3y + sin 4xy. Triangular method, bound- 
ary jets fixed. 

N \k 0 1 2 

3 f{0.98}1 {3. 10-3, 3.0, 0.4} {1.610-6, 8.7 10-3, 0.001, 9.5, 0.9}1 

5 {0.3} {0.03, 0.96, 0.39}1 {2. 10-3, 0.1, 0.07, 2.87, 1.1}1 

9 {O.08} {0.008, 0.25, 0.1} T{8.710-4, 0.027, 0.018, 0.75, 0.3} 

17 {0.02} { 0.002, 0.06, 0.03} 

TABLE 6.12. Poisson equation. Discretization errors in jet-form. 
Analytic solution: x7 -21X5Y2 + 35x3y4 - 7xy6 + sin 4xy. Full 
method, boundary jets fixed. 

N k 0 1 2 

3 {0.513} {2.10-5, 0.027, 0.001} {3.6 10-7, 3.6 10-7, 5.7 10-6, 7.6 10-3, 4. 10-5} 

5 {0.2} {2.10-5, 6. 10-4, 2.1 0-4} {2.4 10-6, 6. 10-6, 1.510-5, 1.510-5, 2.10-5} 

9 {0.05} {4.810-7, 1.10-5, 7.9 10-6} {7.410-9, 4.810-8, 9.210-8, 2.10-5, 2.10-7} 

17 {0.01} {9.1 0-, 2.6 i07, 1.8 i0-7} * 

TABLE 6.13. Poisson equation. Discretization errors in jet-form. 
Analytic solution: e3x sin 3y + sin 4xy. Full method, boundary jets 
fixed. 

N \ k 0 2 

3 {0.98} {3.10-3, 0.05, 2.510-3} {1.610-6, 4.10-5, 9.10-6, 0.03, 2.10-4} 

5 {0.3} {9.10-5, 2.10-3, 1.0o-3} {3.410-6, 7.410-6, 2.10-5, 2.10-3, 4.310-5} 

9 {0.08} {2.610-6, 5.10-5, 4.10-5} {7.610-9, 4.710-8, 9.10-8, 2.10-5, 3.210-7} 

17 {0.02} {4.910-8, 1.10-6, 7.710-} * 

TABLE 6.14. Poisson problem. Maximal absolute values in right 
hand side, triangular method, the whole boundary jets are fixed. 
True solution: x7 - 21X5y2 + 35X3y4 - 7xy6 + sin 4xy. 

without multiscaling with multiscaling 

N \kk 0 1 2 0 1 2 

3 0.39 1.3 2.2 0.39 1.3 6.2 

5 1.2 6.8 38.3 1.2 3.7 15.6 

9 2.1 15.7 57.5 2.1 6.6 37.9 

17 2.8 21.0 73.4 2.8 7.55 * 



FORMAL NUMERICAL SOLUTIONS OF ELLIPTIC PDE'S 233 

TABLE 6.15. Poisson problem. Maximal absolute values in right 
hand side, triangular method, the whole boundary jets are fixed. 
True solution: e3x sin 3y + sin 4xy. 

without multiscaling with multiscaling 

N k0 1 2 0 1 2 

3 6.3 17.5 46.4 6.3 17.5 6.7 

5 5.4 19.9 56.4 5.4 15.2 15.42 

9 5.3 26.3 75.2 5.3 14.9 37.9 

17 5.3 29.2 83.9 5.3 14.8 * 

TABLE 6.16. Poisson problem. Maximal absolute values in right 
hand side, full method, the whole boundary jets are fixed. True 
solution: x7 - 21X5y2 + 35X3y4 - 7xy6 + sin 4xy. 

without multiscaling with multiscaling 

N \ k 0 1 2 0 1 2 

3 0.39 1.9 8.6 0.39 3.9 2.9 

5 1.2 10.1 246.2 1.2 5.7 13.0 

9 2.1 28.9 2282. 2.1 16.2 55.3 

17 2.8 66. 13220. = 2.8 25.7 * 

TABLE 6.17. Poisson problem. Maximal absolute values in right 
hand side, full method, the whole boundary jets are fixed. True 
solution: e3x sin 3y + sin 4xy. 

without multiscaling with multiscaling 

N\k 0 1 2 0 1 2 

3 6.2 14.4 36.9 6.2 17.6 2.76 

5 5.4 42.5 2054. 5.4 34.9 12.3 

9 5.3 94.6 10261. 5.3 148.5 55.3 

17 5.3 200. 45500 5.3 54.7 * 

TABLE 6.18. Condition numbers, triangular method, the whole 
boundary jets are fixed. 

without multiscaling with multiscaling 

N \ k 0 1 2 0 1 2 

3 1 1 1 

5 5.83 5.83 5.84 5.83 5.92 6. 

9 25.27 25.3 25.32 25.27 26.7 28.2 

17 103.1 103.2 * 103.1 123.7 * 



234 Z. WIENER AND Y. YOMDIN 

TABLE 6.19. Condition numbers, full method, the whole boundary 
jets are fixed. 

without multiscaling with multiscaling 

N \k 0 1 2 0 1 2 

3 1 1 11 1 1 

5 5.83 105.5 3.710 5.83 14.7 1.5610 

9 25.27 1341. * 25.27 57.5 5.56 104 

17 103.1 1.23 104 * 103.1 230 * 

TABLE 6.20. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: x7 - 21x5y2 + 35x3y4 - 7xy6. Full method, true 
Dirichlet boundary data. 

N \k 0 1 2 

3 1{0.547} {0, 0.058, 0.036} {0, 0, 0, 0, 0} 

5 {0.220} {8.10-5, 0.003, 0.002} {0, 0, 0, 0, 0} 

9 1{0.059}1 {2.3 10-6, 1. 10-4, 7.10-} 1{0, 0, 0, 0, 0} 

17 {0.015} 1{4.10-8, 3.10-6, 2.7106} * 

TABLE 6.21. Dirichlet problem. Discretization errors in jet-form. 
Analytic solution: e3x sin 3y. F'ull method, true Dirichlet boundary 
data. 

N k 0 1 2 

3 {0.95}1{2.10-3, 6.710-3, 0.05} {3.310-4, 0.003, 0.001, 0.06, 0.02} 

5 {0.3} {1.5 10-4, 5.5 10-3, 1.10-3} {3.2 10-7, 3.1 10-6, 1.2 10-6, 2.3 10-4, 1.2 10-41 

9 {0.08} {5.110-6, 2.10-4, 3.8 10-5} {4.110-10, 1.3 10-8, 3.210-9, 1.610-6, 1.3 10-6} 

17 {0.02} {1.1 i0-7, 9.1 10-6, 1. 1i-6} * 

TABLE 6.22. Condition numbers, full method, true Dirichlet 
boundary data. 

N \k 0 1 2 

3 1 39.3 18196 

5 5.8 291.6 5.2 105 

9 25.3 2136. * 

17 103. 1.6 104 * 
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